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Abstract 

This paper aims to define and provide relationships between pairs of 
Bertrand curves on ruled surfaces of type I in the Galilean and pseudo-
Galilean spaces. Moreover, some important conditions between the 
curvatures of these curves are obtained. Finally, two examples are 
given to confirm our results. 

1. Introduction 

Discovering Galilean space-time is probably one of the major 
achievements of non-relativistic physics. Nowadays, Galilean space is 
becoming increasingly popular as evidenced from the connection of the 
fundamental concepts such as velocity, momentum, kinetic energy, etc. and 
principles as indicated in [1]. In recent years, researchers have begun to 
investigate curves and surfaces in the Galilean space and thereafter pseudo-

Galilean space. Differential geometry of the Galilean space 3G  and especially 
the geometry of ruled surfaces in this space has been largely developed in 
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[2]. Some more results about ruled surfaces in 3G  have been given in [3]. 

Pseudo-Galilean space 3
1G  has been explained in details in [4-6]. Bertrand 

curves were discovered by Bertrand in 1850 and since then there were many 
attempts to generalize either the original defining property or that of the 
linear relation between curvature and torsion or one looked at generalizations 
of the embedding space, see [6-14]. In [11], Gluck has investigated the 

Bertrand curves in n-dimensional Euclidean space .nE  The corresponding 
characterizations of the Bertrand curves in n-dimensional Lorentzian space 

nL  have been given by Tosun and Özgür [9]. In [6, 7], the authors studied 

pairs of non-isotropic Bertrand curves in pseudo-Euclidean 3-space 3
1M  

(Minkowski-3-space or, abbreviated, pe-space). Izumiya and Takeuchi [12, 
13] considered generic properties of Bertrand curves and their curvature 
relationship whereas Schief [8] gave a study of the integrability of Bertrand 
curves. Also, the authors in [10] gave some important characterizations for 
these types of curves. Furthermore, a number of differential geometers 
studied this subject for such curves lying on a surface in the Minkowski 3-

space ,3
1M  see, e.g., [15-17]. This study puts some light onto the pair of 

Bertrand curves which lie on ruled surfaces of special type (type I) in the 
Galilean and pseudo-Galilean spaces. We will deal with Darboux frame of 
non-isotropic curves which depends on the pseudo-Galilean geometry of the 
supporting ruled surface of these curves and allows to formulate geometric 
properties of Bertrand pair as the relations between their normals, 
respectively, geodesic curvatures and torsions. Although, there are a lot of 
works on Bertrand curves but there are rather a few works on them in the 
Galilean and pseudo-Galilean spaces. However, to the best of author’s 
knowledge, Bertrand curves have not presented Galilean and pseudo-
Galilean spaces in depth. Thus, the study is proposed to serve such a need. 

2. Preliminaries 

We now review some basic concepts on classical differential geometry of 
space curves in the Galilean and pseudo-Galilean spaces. The Galilean space 
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is a three-dimensional complex projective space 3P  in which the absolute 

figure of the Galilean space is the ordered triple { },,, Ifw  where w is the 

ideal absolute plane in the real three-dimensional projective space ( ),3 RP  f 

the absolute line in w and I the fixed hyperbolic involution of points of f. 

Homogeneous coordinates in 3G  are introduced in such a way that the 
absolute plane w is given by ,00 =x  the absolute line f by 010 == xx  and 

the hyperbolic involution by ( ) ( ).::0:0::0:0 2332 xxxx →  The last 

condition is equivalent to the requirement that the conic 02
3

2
2 =− xx  is the 

absolute conic. Metric relations are introduced with respect to the absolute 
figure. Throughout this work, we denote the inner and cross products of two 
vectors P, Q in the sense of Galilean by the notation 3, GQP  and 

( ) .3GQP ×  In affine coordinates, the Galilean inner product between two 

vectors ( )321 ,, pppP =  and ( )321 ,, qqqQ =  is defined by [12]: 

 
⎩
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,
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3
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whereas the cross product in the sense of Galilean space is given by: 
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A curve ,: 3GI →α  RI ⊂  of the class ( )3≥rCr  in the Galilean 

space 3G  is defined by the parameterization: 

 ( ) ( ) ( )( ),,, szsyss =α  (2.2) 

where s is a Galilean invariant parameter (the arc-length on α). The curvature 
( )sακ  and the torsion ( )sατ  of α are defined by 
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( ) ( ) ( ) ( ) ,22 szsyss ′′+′′=α ′′=κα  

( ) [ ( ) ( ) ( )]
( )

.,,
2 s

sssDets
α

α
κ

α ′′′α ′′α′=τ  (2.3) 

The orthonormal frame in the sense of Galilean geometry is defined by 

( ) ( ) ( ) ( )( ),,,1 szsyss ′′=α′=T  

( ) ( )
( )

( ) ( )( )
( ) ,,,0
s

szsy
s
ss

ακ
′′′′

=
α ′′
α ′′=N  

 ( ) ( ) ( )( ) ( ) ( )( )
( ) .,,0

3
s

syszsss G
ακ

′′′′−=×= NTB  (2.4) 

The vectors T, N and B in (2.4) are called the tangent, principal normal and 
binormal vectors of α, respectively. For this frame, the Frenet formulas hold 
[2], 

 .
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⎥
⎥
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⎢
⎢
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⎡
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τ

κ

=

′

⎥
⎥
⎥

⎦
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⎢
⎢
⎢

⎣

⎡

α

α

α

B

N

T

B

N

T

 (2.5) 

The pseudo-Galilean geometry is one of the real Cayley-Klein geometries 
equipped with the projective metric of signature ( )−+,,0,0  as in [4]. The 

absolute figure of the pseudo-Galilean geometry consists of an ordered triple 
( ),,, ILΠ  where Π  is the ideal (absolute) plane, L the real line (absolute 

line) in Π  and I the fixed hyperbolic involution of points of L. A plane is 
called pseudo-Euclidean plane if it contains L, otherwise it is called 
isotropic. The planes .constx =  are pseudo-Euclidean planes and so are the 
planes .Π  Other planes are isotropic. A vector ( )321 ,, aaaa =  is said to be 

non-isotropic if .01 ≠a  All unit non-isotropic vectors are of the form 

( ).,,1 32 aaa =  For isotropic vectors 01 =a  holds. According to the motion 

group in the pseudo-Galilean space, there are four types of isotropic vectors; 

spacelike if ,02
3

2
2 >− aa  timelike if 02

3
2
2 <− aa  and two types of lightlike 
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vectors if .32 aa ±=  A non-lightlike isotropic vector is a unit vector if 

.12
3

2
2 ±=− aa  The pseudo-Galilean scalar product of two vectors =p  

( )321 ,, ppp  and ( )321 ,, qqqq =  is given by 

⎩
⎨
⎧

=∧=−
≠∨≠

=
.00if
,00if

,
113322

1111
3
1 qpqpqp

qpqp
qp G  

We give a pseudo-Galilean cross product in the following way: 

( ) ,
0

321

3213
1

qqq
ppp
kj

qp G

−

=×  

where ( )0,1,0=j  and ( )1,0,0=k  are unit spacelike and timelike vectors, 

respectively. If ( )32,,0 pp=ω  is an isotropic vector, then 0=ωp  (p is 

orthogonal to ω in the sense of the pseudo-Galilean space) implies .02 ≠p  

The associated trihedron of the pseudo-Galilean space for a curve ( )sβ  is 

defined by 

( ) ( ) ( ) ( )( ),,,1 szsyss ′′=β′=t  

( ) ( ) ( ) ( )( )
( ) ,,,01
s

szsyss
ββ κ

′′′′
=β ′′

κ
=n  

( ) ( ) ( ) ( )( ),,,01 syszss ′′ε′′ε
κ

=
β

b  (2.6) 

where ,1±=ε  chosen by criterion ( ) ,1,,det =bnt  that means 

 ( ) ( ) ( ( ) ( ) ).2222 szsyszsy ′′−′′ε=′′−′′  (2.7) 

The curvature and torsion are, respectively, given by 

( ) ( ) ( ) ,22 szsys ′′−′′=κβ  (2.8) 

 ( ) ( ) ( ) ( ) ( )
( )

.2s
szsyszsys

β
β

κ

′′′′′−′′′′′
=τ  (2.9) 
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The curve β is timelike (resp. spacelike) if ( )sn  is a spacelike (resp. timelike) 

vector. The principal normal vector or simply normal is spacelike if 1=ε  
and timelike if .1−=ε  The following Frenet’s formula holds: 

 .
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⎥
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⎥
⎥
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⎢
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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n

t

b
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 (2.10) 

A general equation of a ruled rC -surface; 1≥r  in ( )3
1

3 GG  is given by 

its parameterization [18, 19], 

 ( ) ( ) ( ) .;, R∈+β=Ψ vsvsvs A  (2.11) 

In this parameterization, the curve β is the directrix parameterized by the 
pseudo-Galilean arc-length and A is a unit generator vector field. The 
striction curve is defined as the curve of central points, i.e., of points that are 
the meeting points on a given generator of a common perpendicular on that 
generator and its near-by generator. We say that the ruled surface given by 
(2.11) is regular if 

.0,0,0 ≠Ψ×Ψ≠
∂
Ψ∂=Ψ≠

∂
Ψ∂=Ψ vsvs vs  

In what follows, according to the position of the striction curve with 

respect to the absolute figure of ( ),3
1

3 GG  we investigate Bertrand curves of 

ruled surfaces of type I in ( ).3
1

3 GG  

Definition 2.1. Let ( )vs,Ψ  and ( )vs ,Ψ  be two ruled surfaces in three-

dimensional Galilean (pseudo-Galilean) space ( )3
1

3 GG  and consider the arc-

length parameter curves ( )sα  and ( )sα  lying fully on Ψ  and ,Ψ  

respectively. Denote the Darboux frames of α and α  by { }VUT ,,  and 

{ },,, VUT  respectively. If there exists a corresponding relationship between 

the curves α and α  such that, at the corresponding points of these curves, the 

Darboux frame element V of α coincides with the Darboux frame element V  
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of ,α  then α is called a Bertrand curve and α  is a Bertrand mate of α (see 
Figure 1): 

 

Figure 1. The Bertrand curve α and its Bertrand mate .α  

Definition 2.2. In the differential geometry of surfaces, for a curve ( )sx  

lying on a surface S, the following are well known: 

  (i) ( )sx  is a geodesic curve ,0=κ⇔ g  

 (ii) ( )sx  is an asymptotic line ,0=κ⇔ n  

(iii) ( )sx  is a principal line 0=τ⇔ g  [20]. 

3. Bertrand Curves of Ruled Surfaces of Type I in 3G  

In this section, in ,3G  we study Bertrand curves of ruled surfaces of type 
I as striction curves which do not lie in a pseudo-Euclidean plane and 
generators ( )sA  are non-isotropic. From equation (2.11), we can write 

 ( ) ( ) ( )( ) ( ) ( )( ) .,,,1,,, 32 R∈+=Ψ vssvszsysvs AA  (3.1) 

The associated moving orthonormal trihedron of the ruled surface (3.1) is 
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defined by 

( ) ( ),ss AT =  

( ) ( ) ( ),1 sss AN ′
κ

=
α

 

( ) ( ) ( ) ( )( ),,,01
23 ssss AAB ′′−

κ
=

α
 (3.2) 

where κ is the curvature of the ruled surface Ψ and given by 

 ( ) .2
3

2
2 AA ′+′=κα s  (3.3) 

The function 

 ( ) ( ) ( ) ( )( )
2

,,det

α
α

κ

′′′
=τ ssss AAA  (3.4) 

is the torsion of Ψ. The surface frame { }VUT ,,  is defined by 

 ( ) ,0,,;,, ==×=
Ψ×Ψ
Ψ×Ψ

== VUVTTUVUAT
vs
vss  (3.5) 

where U is the isotropic normal vector of .Ψ  Let φ  be the angle between the 

isotropic vectors U and N. Then we may express the results in matrix form as 
follows: 

 .
cossin0
sincos0

001

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

φφ−

φφ=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

B
N
T

U
V
T

 (3.6) 

By straightforward calculations, we have the Darboux frame equations as 
follows: 

 
( ) ( )

( )
( )

,
00

00
0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

τ−
τ
κκ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

α

α

αα

U
V
T

U
V
T

g

g

gn

ds
d  (3.7) 

where ( ) ,ακn  ( )ακg  and ( )ατg  are the normal curvature, geodesic curvature 
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and the relative torsion, respectively, given by 

( ) ( ) ( ) .,sin,cos ⎟
⎠
⎞⎜

⎝
⎛ φ+τ=τφκ−=κφκ=κ αααααα ds

d
ggn  (3.8) 

Now, by considering the Darboux frame, we give some characterizations 

of Bertrand curves in 3G  through the following theorems. 

Theorem 3.1. Let Ψ and Ψ  be two ruled surfaces of type I with α and 

α  their striction curves, respectively, in Galilean space 3G  given by 

( ) ( ) ( ) ( ) ( ) ( ).,,, svsvssvsvs BA +α=Ψ+α=Ψ  

Then α  is a Bertrand mate of α if and only if the curve α is a geodesic 
curve. 

Proof. Firstly, if α and α  are the Bertrand and Bertrand mate curves of 

Ψ and ,Ψ  respectively, then by the definition, we can write 

 ( ) ( ) ( ) .Vsss λ+α=α  (3.9) 

Differentiating (3.9) with respect to s and using equations (3.7), one can 
obtain 

 ( ) ( ) ( ) .UVTT ατλ+λ+= gssds
sd  (3.10) 

Since the direction of V coincides with the direction of ,V  we get ( ) .0=λ s  

This means that λ  is a nonzero constant. Thus, (3.10) becomes 

 ( ) .UTT ατλ+= gds
sd  (3.11) 

Furthermore, we have 

 ,sincos UTT θ+θ=  (3.12) 

where θ  is the angle between the tangent vectors T and T  at the 
corresponding points of α and .α  By differentiating (3.12) with respect to s, 
we get 
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(( ) ( ) ) (( ) ( ) )VTUV θτ−θκ+θθ−=κ+κ αααα sincossin gngn ds
sd  

(( ) ) .coscos Uθθ+θκ+ αg  (3.13) 

Also, we can write 

 .cossin UTU θ+θ−=  (3.14) 

From (3.13) and (3.14), we get 

(( ) ( ) ( )) ds
sd

gn UTV θ+θ−κ+κ αα cossin  

(( ) ( ) )VT θτ−θκ+θθ−= αα sincossin gn  

(( ) ) .coscos Uθθ+θκ+ αg  (3.15) 

Equating the coefficients of T, U on both sides of (3.15), we obtain 

 ( ) .0=κ αg  (3.16) 

Then the striction curve on the ruled surface Ψ  is a geodesic curve. 

Secondly, if the striction curve α is a geodesic curve, then from (3.11), 
we get 

 ( ) ,1 22
2

ατλ+=⎟
⎠
⎞⎜

⎝
⎛

gds
sd  (3.17) 

it follows that 

 ( ) ( ) .
3

αα κ⎟
⎠
⎞⎜

⎝
⎛=τλ gg ds

sd  (3.18) 

We proceed as above, differentiating (3.11) gives 

(( ) ( ) ) (( ) ( ) ) ( ( ) ) .2
2

22
UVTUV ααααα τλ+τλ−κ=+⎟

⎠
⎞⎜

⎝
⎛κ+κ ggngn

ds
sd

ds
sd  

 (3.19) 
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Taking the cross product of (3.11) with (3.19) to get 

(( ) ( ) )
3
⎟
⎠
⎞⎜

⎝
⎛κ−κ αα ds

sd
gn VU  

( ) (( ) ( ) ) ( ( ) ) (( ) ( ) ) .22 UVT αααααα τλ−κ+τλ−τλ−κτλ−= gnggng  (3.20) 

Substituting (3.18) into (3.20), we get 

(( ) ( ) )
3
⎟
⎠
⎞⎜

⎝
⎛κ+κ αα ds

sd
ng VU  

( ) (( ) ( ) ) ( ) (( ) ( ) ) .2
3

2 UVT αααααα τλ−κ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛κ−τλ−κτλ−= gnggng ds

sd  

 (3.21) 

Also, the cross product of (3.11) with (3.21) yields 

( ( ) ( ) )
4
⎟
⎠
⎞⎜

⎝
⎛κ−κ− αα ds

sd
gn UV  

( ) ( ) T⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛κτλ= αα

3

ds
sd

gg  

((( ) ( ) ) ( ) (( ) ( ) ))V2222
ααααα τλ−κτλ+τλ−κ− gnggn  (3.22) 

( ) .
3

U⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛κ− α ds

sd
g  

Now, the norm of (3.21) is given by 

 ( ) (( ) ( ) ).2
3

ααα τλ−κ⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛κ gnn ds

sd
ds

sd  (3.23) 

Multiplying (3.20) with ( ) ds
sd

n ακ  and (3.21) with gκ  and adding them, we 

get 
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(( ) ( ) ) U
4

22 ⎟
⎠
⎞⎜

⎝
⎛κ+κ αα ds

sd
gn  

( ) (( ) ( ) ) ( ) ( ) T⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛κ+κτλ−κτλ−= ααααα

3
22

ds
sd

ds
sd

gngng  

( ) ( ) ( ) (( ) ( ) ) V⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛τλ−κκ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛κκ−+ ααααα

2
2

3

ds
sd

ds
sd

ds
sd

gnggn  

( ) (( ) ( ) ) ( ) .
3

22 U⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛κ+τλ−κκ+ αααα ds

sd
ds

sd
ggnn  (3.24) 

Inserting (3.22) into (3.24), we obtain 

(( ) ( ) ) ( ) ( ) ( ) TU ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛κ+⎟

⎠
⎞⎜

⎝
⎛κτλ−=⎟

⎠
⎞⎜

⎝
⎛κ+κ ααααα

3
2

3
3

4
22

ds
sd

ds
sd

ds
sd

gnggn  

( ) ( ) .
3

2
3

3 U⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛κ+⎟

⎠
⎞⎜

⎝
⎛κ+ αα ds

sd
ds

sd
gn  (3.25) 

In the light of the above, equations (3.11) and (3.25) show that the vectors T  
and U  lie in the plane which contains T and U. Thus, the vectors V and V  
are coincident at the corresponding points. Hence, the proof is completed. ~ 

Theorem 3.2. Let α and α  be Bertrand and its Bertrand mate curves of 
two ruled surfaces of type I. Then the product of relative torsions ( )ατg  and 

( )ατg  is constant. 

Proof. As α  is the Bertrand mate of α, one can write 

 ( ) ( ) .; VVV =λ−α=α ss  (3.26) 

By differentiating (3.26) with respect to s, we get 

 ( ) .UTT ds
sd

ds
sd

g ατλ−=  (3.27) 
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From (3.12) and (3.14), we have 

 .sincos UTT θ−θ=  (3.28) 

So, equations (3.27) and (3.28) together yield 

,cos ds
sd=θ  

 ( ) .sin ds
sd

g ατλ=θ  (3.29) 

Furthermore, from (3.11) and (3.12), the following equality holds: 

 
( )

,sincos
1

θ
τλ

=
θ

= αg
ds

sd  (3.30) 

it follows that 

 ( ) .tan ατλ=θ g  (3.31) 

Thus, equations (3.29) and (3.31) lead to the desired result. ~ 

Proposition 3.1. Let { }αα,  be a Bertrand pair of ruled surfaces of type 

I in .3G  Then the curvatures of α and α  satisfy the following relations: 

 (i) ( ) ( ) ( ) ( ) ,0sincos =τθ−κθ αα gn  

(ii) ( ) (( ) ( ) ) ( ( ) ).cossincossin
2

θ+θτλθτ+θκ⎟
⎠
⎞⎜

⎝
⎛=τ αααα ggng sd

ds  

Proof. (i) As V and V  are coincidences, the differentiation of (3.5) with 
respect to s  gives 

 ( ) ( ) 0,, =τ−+τ αα VVUU sd
ds

gg  (3.32) 

and 

 ( ) (( ) ( ) ) .0,, =κ+κ+τ ααα VUVUT sd
ds

gng  (3.33) 
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Inserting (3.14) into (3.32) and (3.33) and using Theorem 3.1, we get 

 ( ) ( ) ( ) ( ) .sin,sec ds
sd

sd
ds

gngg θτ=κθτ=τ αααα  (3.34) 

Equation (3.34) leads to 

( ) ( ) ( ) ( ) .0sincos =τθ−κθ αα gn  

It is known that, from classical differential geometry, the geodesic 
curvature and geodesic torsion of a curve on a surface are given by [20], 

 ( ) ,, 2

2
U×αα

=κ α sd
d

sd
d

g     ( ) ,, sd
d

sd
d

g
UU ×α=τ α  (3.35) 

where U  being the surface normal, then from (3.9) and (3.14), we get 

( ) ,UT sd
ds

sd
ds

sd
d

g ατλ+=α  (3.36) 

(( ) ( ) )VTU θτ+θκ⎟
⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛ θθ−= αα cossincos gnsd

ds
sd

d
sd

d  

( ) .sin U⎟
⎠
⎞⎜

⎝
⎛ κ+θθ− α sd

ds
sd

d
g  (3.37) 

Using the cross product of (3.14) with (3.37), we get 

(( ) ( ) )TUU θτ+θκ⎟
⎠
⎞⎜

⎝
⎛θ=× αα cossincos gnsd

ds
sd

d  

( ) V⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ κ−θθ+⎟

⎠
⎞⎜

⎝
⎛ θθ− α sd

ds
sd

d
sd

d
g

22 sincos  

(( ) ( ) ) .cossinsin Uθτ+θκ⎟
⎠
⎞⎜

⎝
⎛θ+ αα gnsd

dsb  (3.38) 

Thus, the scalar product of (3.36) with (3.38) satisfies (ii). ~ 

Under the previous proposition, we can discuss the following cases: 

Case 3.1. If ( )sα  is an asymptotic line, then the linear relation 
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 ( ( ) ) ( ) (( ( ) ) ) ( ) 0cos1 22 =κθτλ++ττλ αααα nggg  (3.39) 

is satisfied. 

Case 3.2. If ( )sα  is a principal line, then we get 

 ( ) (( ( ) ) ) ( ) .0sin1 22 =κθτλ+−τ ααα ngg  (3.40) 

Notation 3.1. The above two cases together with equations (3.17) and 
(3.29) give the following important relations: 

 ( )
( )

( ( ) )
( )

( )
( ( ) )

.
1

,
1 2222

α

α
α

α

α
α τλ+

κ
=κ

τλ−

τ
=τ

g

n
n

g

g
g  (3.41) 

It follows that the curve α  is a helix in 3G  if α is too. 

4. Bertrand Curves of Ruled Surface of Type I in 3
1G  

In this section, we study Bertrand curves on ruled rC -surfaces; 1r  

of type I (its curve ( )sβ  does not lie in a pseudo-Euclidean plane and the 

generators ( )sA  are non-isotropic) in 3
1G  given by the parameterization 

(3.1). In the sense of ,3
1G  the associated moving orthonormal trihedron of 

this ruled surface is defined by 

( ) ( ),ss At =  

( ) ( ),1 ss An ′
κ

=
β

 

( ) ( ) ( )( ),,,01
23 sss AAb ′′

κ
=

β
 (4.1) 

where βκ  is the curvature of Φ  given by 

 ,2
3

2
2 AA ′−′=κβ  (4.2) 
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and the function 

 ( ) ( ) ( )( )
2

,,det

β
β

κ

′′′
=τ sss AAA  (4.3) 

is the torsion of .Φ  Let ϕ  be the hyperbolic angle between the isotropic 

timelike vectors U and n. Then we may express the results in matrix form as 
follows: 

 .
coshsinh0
sinhcosh0

001

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ϕϕ

ϕϕ=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

b
n
t

V
U
t

 (4.4) 

By a straightforward computation, we have the Darboux frame equations as 
follows: 

 
( ) ( )

( )
( )

,
00

00
0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

τ
τ
κκ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

β

β

ββ

V
U
t

V
U
t

g

g

gn

ds
d  (4.5) 

where ( ) ,βκn  ( )βκg  and ( )βτg  are the normal curvature, the geodesic 

curvature and the relative torsion, respectively, given by 

( ) ( ) ( ) .,sinh,cosh ⎟
⎠
⎞⎜

⎝
⎛ ϕ+τ=τϕκ−=κϕκ=κ ββββββ ds

d
ggn  (4.6) 

Now, by considering the Darboux frame, we define Bertrand curves and give 

the characterizations of these curves in pseudo-Galilean space 3
1G  through 

the following theorems. 

Theorem 4.1. Let Φ  and Φ  be two ruled surfaces of type I and ,β β  

their striction curves in ,3
1G  respectively, given by 

( ) ( ) ( ) ( ) ( ) ( ).,,, svsvssvsvs BA +β=Φ+β=Φ  

Then β  is a Bertrand mate of β if and only if the curve β is an asymptotic 

line. 
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Proof. The proof is similar to that considered in Theorem 3.1 with 
( ) .0=κ βn  ~ 

Theorem 4.2. Let β and β  be Bertrand and its Bertrand mate curves of 

two ruled surfaces of type I. Then the product of their relative torsions ( )βτg  

and ( )βτg  is constant. 

Proof. Similar to the proof of Theorem 3.2. ~ 

Proposition 4.1. Let { }ββ,  be a Bertrand pair of ruled surfaces of type I 

in .3
1G  Then the curvatures of β and β  satisfy, respectively, 

  (i) ( ) ( ) ( ) ( ) ,0sinhcosh =τΘ+κΘ ββ gg  

where Θ  is the angle between the tangent vectors t and t  at the 

corresponding points of β and ,β  

 (ii) ( ) (( ) ( ) )( ( ) ),sinhcosh2
3

Θτλ−Θτλ+κ⎟
⎠
⎞

⎜
⎝
⎛=κ ββββ gggg sd

ds  

(iii) ( ) (( ) ( ) )( ( ) ).coshsinhcoshsinh
2

Θ−ΘτλΘτ+Θκ⎟
⎠
⎞

⎜
⎝
⎛=τ ββββ gggg sd

ds  

Proof. As V and V  are coincidence, the differentiation of (3.5) with 
respect to s  gives 

 ( ) ( ) 0,, =τ+τ ββ VVUU sd
ds

gg  (4.7) 

and 

 ( ) (( ) ( ) ) .0,, =κ+κ+τ βββ VUVUt sd
ds

ngg  (4.8) 

Also, we can write 

 .coshsinh UtU Θ+Θ=  (4.9) 

Inserting (4.9) into (4.7) and (4.8) and using Theorem 4.1, we get, 
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respectively, 

 ( ) ( ) ( ) ( ) .sinh,sech sd
sd

sd
ds

gggg Θτ−=κΘτ=τ ββββ  (4.10) 

Equation (4.10) leads to 

( ) ( ) ( ) ( ) .0sinhcosh =τΘ+κΘ ββ gg  

Now, in the light of (3.9); ( ) ( ) ( ) ,Vsss λ+β=β  one can calculate the 

following: 

( ) ,Ut sd
ds

sd
ds

sd
d

g βτλ+=β  (4.11) 

(( ) ( ) ) ( ) UT ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τλ+τλ+κ⎟

⎠
⎞⎜

⎝
⎛+=β

βββ 2

22

2

2

2

2

sd
sd

sd
ds

sd
sd

sd
d

ggn  

(( ) ( ) ) ,2
2

V⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τλ+κ⎟

⎠
⎞⎜

⎝
⎛+ ββ ggsd

ds  (4.12) 

( ) UTU
⎟
⎠
⎞⎜

⎝
⎛ κ+ΘΘ+⎟

⎠
⎞⎜

⎝
⎛ ΘΘ= β sd

ds
sd

d
sd

d
sd

d
nsinhcosh  

(( ) ( ) ) .coshsinh VΘτ+Θκ⎟
⎠
⎞⎜

⎝
⎛+ ββ ggsd

ds  (4.13) 

Using the cross product of (4.9) with (4.12) and (4.13) to obtain 

(( ) ( ) ) TU ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τλ+κ⎟

⎠
⎞⎜

⎝
⎛Θ=×β

ββ
2

2

2

2
cosh ggsd

ds
sd

d  

(( ) ( ) ) U⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τλ+κ⎟

⎠
⎞⎜

⎝
⎛Θ+ ββ

2
2

sinh ggsd
ds  

⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Θ−+ 2

2
cosh

sd
sd  

(( ) ( ) ) ( ) ,sinh 2

22
V⎟⎟
⎠

⎞
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τλ+τλ+κ⎟

⎠
⎞⎜

⎝
⎛Θ+ βββ sd

sd
sd

ds
ggn  (4.14) 
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(( ) ( ) )TUU Θτ+Θκ⎟
⎠
⎞⎜

⎝
⎛Θ−=× ββ coshsinhcosh ggsd

ds
sd

d  

(( ) ( ) )UΘτ+Θκ⎟
⎠
⎞⎜

⎝
⎛Θ− ββ coshsinhsinh ggsd

ds  

( ) .sinhcosh 22 V⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ κ+ΘΘ−⎟

⎠
⎞⎜

⎝
⎛ Θθ+ β sd

ds
sd

d
sd

d
n  (4.15) 

According to (3.35), the scalar product of (4.11) with (4.14) and (4.15) 
satisfies the other two relations. ~ 

In the light of this proposition, we can discuss the following cases: 

Case 4.1. If ( )sβ  is a geodesic curve, then the linear relation 

 ( ( ) ) ( ) ( ) ( ) 01 22 =ττλ+κτλ− ββββ gggg  (4.16) 

is satisfied. 

Case 4.2. If ( )sβ  is a principal line, then we get the following linear 

relation: 

 (( ( ) ) ) ( ) ( ) .0sinh1 22 =τ+κΘτλ− βββ ggg  (4.17) 

Notation 4.1. From the previous calculations, we have 

 ( ) ( ) .sinh,1 22
2

ds
sd

ds
sd

gg ββ τλ=θτλ−=⎟
⎠
⎞⎜

⎝
⎛  (4.18) 

Then the above two cases together with equations (4.18) give, respectively, 

 ( )
( )

( ( ) )
( )

( )

( ( ) )
,

1
,

1 2222
β

β
β

β

β
β τλ−

κ
=κ

τλ−

τ
−=τ

g

g
g

g

g
g  (4.19) 

it follows that β  is a geodesic helix in 3
1G  if β  is too. 

Hereafter, we give two examples to investigate our main results. 
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5. Examples 

Example 5.1. Consider the ruled surface of type I in Galilean space 3G  
parameterized by 

( ) ,sin1,cos1,1cos,sin,, ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛=Ψ h

s
gh

s
gvh

sfh
sfsvs  

where ,,, R∈hgf  ,0≠f  ,0≠g  0≠h  and .vhfg >−  Its striction 

curve ( ) ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛=α h

sfh
sfss cos,sin,  does not lie in a pseudo-Euclidean 

plane and ( ) ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛= h

s
gh

s
gsA sin1,cos1,1  is a unit generator non-isotropic 

vector field. From (3.2), (3.3) and (3.4), the Frenet apparatus of ( )sα  is given 

by 

( ) ,sin1,cos1,1 ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛== h

s
gh

s
gsA T  

,cos,sin,0 ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛−= h

s
h
sN  

,sin,cos,0 ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛= h

s
h
sB  

.1,1
hgh −=τ=κ αα  

Moreover, from (3.5), the normal vector of Ψ  is expressed as 

( ) ( )

( )
.

sincos,cossin,0

22 vfgh

h
svh

sfghh
svh

sfgh

+−

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛−

=U  

If φ  is the angle between U and N, then it is given by 

,cos, φ= NUNU  
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it follows that 

( )

( ) ( )
.sin,cos

2222 fghv

v

fghv

fgh

−+
=φ

−+

−−=φ  

Furthermore, by using equation (3.5), we get 

( ) ( )

( )
.

cossin,sincos,0

22 fghv

h
svh

sfghh
svh

sfgh

−+

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛−−⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛−

=V  

Here, assuming that ( )sα  is the Bertrand mate of ,α  then it can be written as 

( ) ( ) ( )Vsss λ+α=α  

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛= h

sfh
sfs cos,sin,  

( ) ( )

( )
.

cossin,sincos,0

22 fghv

h
svh

sfghh
svh

sfgh

−+

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛−−⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛−λ

+  

From equation (3.8), one can obtain 

( ) .1
hg −=τ α  

Now, as θ  is the angle between the tangent vectors T and ,T  equation (3.29) 
gives 

( ) .sin,cos
2222 λ+

λ−=τλ=θ
λ+

==θ α
hsd

ds

h

h
sd

ds
g  

Using Proposition 3.1 to obtain 

( ) .2h
n

λ=κ α  

In addition to the above, the curvatures ( ) ,ατg  ( )ακg  and ( )ακn  of ( )sα  
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can be computed from (3.8) as follows: 

( )
( )

( )
( )

( ) ( ) .0,, 2222 =κ=κ
λ+

λ=κ
λ−

−=τ αααα ggng
hh

h  

Then α  and α  are geodesic curves. Finally, the Darboux frame { }VUT ,,  

is expressed as: 

( )

( )

( )

( )

,
sincos

sinsincos1

,
cossin

sincoscos1,cos

22

22

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+

⎟
⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛−

θ+⎟
⎠
⎞⎜

⎝
⎛θ−

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−+

⎟
⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛−

θ+⎟
⎠
⎞⎜

⎝
⎛θθ

=

fghv

h
svh

sfgh

h
s

g

fghv

h
svh

sfgh

h
s

g
T  

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛θ−= h

s
gh

s
g sin1,cos1,1sinU  

( )

( )

( )

( )
,

sincosh
,

cossin
,0cos

2222
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−+

⎟
⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛−

−+

⎟
⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛−

θ+
fghv

h
svh

sfgh

fghv

h
svh

sfgh
 

( )

( )

( )
.

cossin

,sincos,0
1

22
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛−−

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛−

−+
==

h
svh

sfgh

h
svh

sfgh

fghv
VV  

It is easily seen that the product of relative torsions ( )ατg  and ( )ατg  is 

constant ( ) ( ) .1
22 ⎟
⎠
⎞

⎜
⎝
⎛

λ−
=ττ αα h

gg  

Example 5.2. Let us now consider the ruled surface of type I in pseudo-

Galilean space .3
1G  It can be parameterized by 

( ) ,sinh1,cosh1,1cosh,sinh,, ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛=Φ h

s
gh

s
gvh

sfh
sfsvs  

where ,,, R∈hgf  ,0≠f  ,0≠g  0≠h  and .vhfg >−  Its striction 
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curve ( ) ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛=β h

sfh
sfss cosh,sinh,  does not lie in a pseudo-Galilean 

plane and ( ) ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛= h

s
gh

s
gsA sinh1,cosh1,1  is a unit generator non-isotropic 

vector field. From equations (4.1), (4.2) and (4.3), the Frenet apparatus of 
( )sβ  is given by 

( ) ,sinh1,cosh1,1 ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛== h

s
gh

s
gsA t  

,cosh,sinh,0 ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛= h

s
h
sn  

,sinh,cosh,0 ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛= h

s
h
sb  

.1,1
hgh =τ=κ ββ  

From (3.5), the isotropic timelike normal vector of Φ  is expressed as 

( ) ( )
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If ϕ  is the hyperbolic angle between U and n, then it is given by 
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it follows that 
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Furthermore, using equation (3.5), the vector V is 
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Here, assuming that ( )sβ  is the Bertrand mate of β, then it can be written as 

follows: 

( ) ( ) ( )Vsss λ+β=β  
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From equation (4.7), we get 

( ) .1
hg =τ β  

Also, equations (4.9) and (4.10) give 

( ) .sinh,cosh
2222 λ−
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==Θ β
hsd
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h

h
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Using Proposition 4.1 to obtain 

( ) .2h
g

λ−=κ β  

Now, from equation (4.6), the curvatures ( ) ,βτg  ( )βκg  and ( )βκn  of ( )sβ  

can be computed as follows: 
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The Darboux frame { }VUt ,,  is expressed as: 
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From previous computations, it is easily seen that the product of relative 

torsions ( )βτg  and ( )βτg  is constant ( ) ( ) .1
22 ⎟
⎠
⎞

⎜
⎝
⎛

λ−
−=ττ ββ h

gg  

6. Conclusion 

The paper defines and characterizes Bertrand curves in 3G  and 3
1G . 

Furthermore, the relations between the geodesic curvatures, the normal 
curvatures and the relative torsions of these curves are obtained. Finally, we 
support our results through examples. 
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